3 and 4 .Determinants and Matrices
hard

Let $A\, = \,\left( {\begin{array}{*{20}{c}}
0&{2q}&r\\
p&q&{ - r}\\
p&{ - q}&r
\end{array}} \right)$. If $A{A^T}\, = \,{I_3},\,\left| p \right|$ then $\left| p \right|$ is

A

$\frac{1}{{\sqrt 5 }}$

B

$\frac{1}{{\sqrt 3 }}$

C

$\frac{1}{{\sqrt 2 }}$

D

$\frac{1}{{\sqrt 6 }}$

(JEE MAIN-2019)

Solution

$A$ is orthogonal matrix

$\therefore 4{q^2} + {r^2} = {p^2} + {q^2} + {r^2} = 1\,\,\,\,\,\,…….\left( 1 \right)$

         ${p^2} – {q^2} – {r^2} = 0\,\,\,\,\,\,…\left( 2 \right)$

and $2{q^2} – {r^2} = 0\,\,\,\,\,….\left( 3 \right)$

Solving $(1),(2)$ and $(3)$

${p^2} = \frac{1}{2}$

$\left| p \right| = \frac{1}{{\sqrt 2 }}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.