3 and 4 .Determinants and Matrices
hard

જો $A = \left( {\begin{array}{*{20}{c}}
{\cos \,\alpha }&{ - \sin \,\alpha }\\
{\sin \,\alpha }&{\cos \,\alpha }
\end{array}} \right)$, $\left( {\alpha  \in R} \right)$ આપલે છે કે જેથી ${A^{32}} = \left( {\begin{array}{*{20}{c}}
0&{ - 1}\\
1&0
\end{array}} \right)$ તો  $\alpha $ ની કિમંત મેળવો.

A

$0$

B

$\frac{\pi }{{16}}$

C

$\frac{\pi }{{32}}$

D

$\frac{\pi }{{64}}$

(JEE MAIN-2019)

Solution

$A = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ – \sin \alpha }\\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]$

${A^2} = \left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ – \sin \alpha }\\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ – \sin \alpha }\\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{ – \sin 2\alpha }\\
{\sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]$

${A^3} = \left[ {\begin{array}{*{20}{c}}
{\cos 2\alpha }&{ – \sin 2\alpha }\\
{\sin 2\alpha }&{\cos 2\alpha }
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{\cos \alpha }&{ – \sin \alpha }\\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right]$

$ = \left[ {\begin{array}{*{20}{c}}
{\cos 3\alpha }&{ – \sin 3\alpha }\\
{\sin 3\alpha }&{\cos 3\alpha }
\end{array}} \right]$

Simiarly ${A^{32}} = \left[ {\begin{array}{*{20}{c}}
{\cos 32\alpha }&{ – \sin 32\alpha }\\
{\sin 32\alpha }&{\cos 32\alpha }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ – 1}\\
1&0
\end{array}} \right]$

 $ \Rightarrow \cos 32\alpha  = 0$ and $\sin 32\alpha  = 0$

$ \Rightarrow 32\alpha  = \left( {4n + 1} \right)\frac{\pi }{2},n \in 1$

$\alpha  = \left( {4n + 1} \right)\frac{\pi }{{64}},n \in 1$

$\alpha  = \frac{\pi }{{64}}$ for $n = 0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.