Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$

If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$

and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :

  • [JEE MAIN 2021]
  • A

    $50$

  • B

    $51$

  • C

    $48$

  • D

    $49$

Similar Questions

The number of ways in which thirty five apples can be distributed among $3$ boys so that each can have any number of apples, is

A  man $X$  has $7$  friends, $4$  of them are ladies and  $3$ are men. His wife $Y$ also has $7$ friends, $3$ of  them are  ladies and $4$ are men. Assume $X$ and $Y$ have no comman friends. Then the total number of ways in which $X$ and $Y$ together  can throw a party inviting $3$ ladies and $3$ men, so that $3$ friends of each of $X$ and $Y$ are in this party is :

  • [JEE MAIN 2017]

Total number of $3$ letter words that can be formed from the letters of the word $'SAHARANPUR'$ is equal to

In how many ways a team of $10$ players out of $22$ players can be made if $6$ particular players are always to be included and $4$ particular players are always excluded

The number of ways in which $10$ persons can go in two boats so that there may be $5 $ on each boat, supposing that two particular persons will not go in the same boat is