8. Sequences and Series
hard

Let $a_{1}, a_{2}, a_{3}, \ldots$ be a G.P. such that $a_{1}<0$; $a_{1}+a_{2}=4$ and $a_{3}+a_{4}=16 .$ If $\sum\limits_{i=1}^{9} a_{i}=4 \lambda,$ then $\lambda$ is equal to 

A

$-171$

B

$171$

C

$\frac{511}{3}$

D

$-513$

(JEE MAIN-2020)

Solution

$a_{1}+a_{2}=4$

$\mathrm{r}^{2} \mathrm{a}_{1}+\mathrm{r}^{2} \mathrm{a}_{2}=16$

$\Rightarrow \mathrm{r}^{2}=4 \Rightarrow \mathrm{r}=-2 \quad$ as $\mathrm{a}_{1}<0$

and $a_{1}+a_{2}=4$

$a_{1}+a_{1}(-2)=4 \Rightarrow a_{1}=-4$

$4 \lambda=(-4)\left(\frac{(-2)^{9}-1}{-2-1}\right)=(-4) \times \frac{513}{3}$

$\Rightarrow \lambda=-171$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.