- Home
- Standard 12
- Mathematics
Let $A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$
Find $AB$
$\left[ {\begin{array}{*{20}{l}}
{ - 6}&{26} \\
{ - 1}&{19}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}}
{ - 6}&{26} \\
{ - 1}&{19}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}}
{ - 6}&{26} \\
{ - 1}&{19}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{l}}
{ - 6}&{26} \\
{ - 1}&{19}
\end{array}} \right]$
Solution
Matrix $A$ has $2$ columns. This number is equal to the number of rows in matrix $B$. Therefore, $AB $ is defined as :
$AB = \left[ {\begin{array}{*{20}{l}}
2&4 \\
3&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&3 \\
{ – 2}&5
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
{2(1) + 4( – 2)}&{2(3) + 4(5)} \\
{3(1) + 2( – 2)}&{3(3) + 2(5)}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
{2 – 8}&{6 + 20} \\
{3 – 4}&{9 + 10}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}}
{ – 6}&{26} \\
{ – 1}&{19}
\end{array}} \right]$
Similar Questions
Consider the following information regarding the number of men and women workers in three factories $I,\,II$ and $III$
Men workers |
Women workers |
|
$I$ | $30$ | $25$ |
$II$ | $25$ | $31$ |
$III$ | $27$ | $26$ |
Represent the above information in the form of a $3 \times 2$ matrix. What does the entry in the third row and second column represent?