Find the pairs of equal sets, if any, give reasons:
$A = \{ 0\} ,$
$B = \{ x:x\, > \,15$ and $x\, < \,5\} $
$C = \{ x:x - 5 = 0\} ,$
$D = \left\{ {x:{x^2} = 25} \right\}$
$E = \{ \,x:x$ is an integral positive root of the equation ${x^2} - 2x - 15 = 0\,\} $
Match each of the set on the left in the roster form with the same set on the right described in set-builder form:
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ is a prime number and a divisor $6\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ is an odd natural number less than $10\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ is natural number and divisor of $6\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ a letter of the work $\mathrm{MATHEMATICS}\} $ |
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$ 0\, ........\, A $
Write the set $A = \{ 1,4,9,16,25, \ldots .\} $ in set-builder form.
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\{0,1,2,3,4,5,6,7,8,9,10\}$