- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
ધારો કે, $z_{1}=2-i, z_{2}=-2+i .$ $ \operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$ શોધો.
A
$\frac{-2}{5}$
B
$\frac{-2}{5}$
C
$\frac{-2}{5}$
D
$\frac{-2}{5}$
Solution
$z_{1}=2-i, z_{2}=-2+i$
$z_{1} z_{2}=(2-i)(-2+i)=-4+2 i+2 i-i^{2}=-4+4 i-(-1)=-3+4 i$
$\overline{z_{1}}=2+i$
$\therefore \frac{z_{1} z_{2}}{z_{1}}=\frac{-3+4 i}{2+i}$
On multiplying numerator and denominator by $(2-i),$ we obtain
$\frac{z_{1} z_{2}}{z_{1}}=\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2}+1^{2}}$
$=\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i$
On comparing real parts, we obtain
$\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)=\frac{-2}{5}$
Standard 11
Mathematics