If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
If $A$ and $B$ are two sets, then $A \cap (A \cup B)'$ is equal to
Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$
Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$A=\{a, b, c\}$