- Home
- Standard 12
- Mathematics
Let $S$ be the set of all integer solutions, $(x, y, z)$, of the system of equations
$x-2 y+5 z=0$
$-2 x+4 y+z=0$
$-7 x+14 y+9 z=0$
such that $15 \leq x^{2}+y^{2}+z^{2} \leq 150 .$ Then, the number of elements in the set $S$ is equal to
$16$
$-8$
$-16$
$8$
Solution
$\Delta=\left|\begin{array}{ccc}1 & -2 & 5 \\ -2 & 4 & 1 \\ -7 & 14 & 9\end{array}\right|=0$
Let $\quad x=k$
$\Rightarrow \quad$ Put in $(1)\;and\;(2)$
$k-2 y+5 z=0$
$-2 k+4 y+z=0$
$z=0, y=\frac{k}{2}$
$\therefore \quad x , y , z$ are integer
$\Rightarrow \quad k$ is even integer
Now $x=k, y=\frac{k}{2}, z=0$ put in condition
$\begin{array}{l}15 \leq k^{2}+\left(\frac{k}{2}\right)^{2}+0 \leq 150 \\12 \leq k^{2} \leq 120\end{array}$
$\Rightarrow \quad k =\pm 4,\pm 6,\pm 8,\pm 10$
$\Rightarrow$ Number of element in $S =8$