- Home
- Standard 12
- Mathematics
Let $\theta=\frac{\pi}{5}$ and $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right] \cdot$ If $B=A + A ^{4},$ then $\operatorname{det}( B )$
is one
lies in $(1,2)$
is zero
lies in $(2,3)$
Solution
$A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ -\sin 2 \theta & \cos 2 \theta\end{array}\right]$
$B=A+A^{4}$
$=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]+\left[\begin{array}{cc}\cos 4 \theta & \sin 4 \theta \\ -\sin 4 \theta & \cos 4 \theta\end{array}\right]$
$B=\left[\begin{array}{cc}(\cos \theta+\cos 4 \theta) & (\sin \theta+\sin 4 \theta) \\ -(\sin \theta+\sin 4 \theta) & (\cos \theta+\cos 4 \theta)\end{array}\right]$
$|B|=(\cos \theta+\cos 4 \theta)^{2}+(\sin \theta+\sin 4 \theta)^{2}$
$|B|=2+2 \cos 3 \theta$
when $\theta=\frac{\pi}{5}$
$| B |=2+2 \cos \frac{3 \pi}{5}=2(1-\sin 18)$
$| B |=2\left(1-\frac{\sqrt{5}-1}{4}\right)=2\left(\frac{5-\sqrt{5}}{4}\right)=\frac{5-\sqrt{5}}{2}$