- Home
- Standard 12
- Mathematics
माना $A =\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$ है। तो $A ^{2025}- A ^{2020}$ बराबर है -
$A^{6}-A$
$\mathrm{A}^{5}$
$\mathrm{A}^{5}-\mathrm{A}$
$\mathrm{A}^{6}$
Solution
$A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right] \Rightarrow A^{2}=\left[\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{array}\right]$
$A^{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0\end{array}\right] \Rightarrow A^{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
$\mathrm{A}^{\mathrm{n}}=\left[\begin{array}{ccc}1 & 0 & 0 \\ \mathrm{n}-1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$
$\mathrm{A}^{2025}-\mathrm{A}^{2020}=\left[\begin{array}{lll}0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
$A^{6}-A=\left[\begin{array}{lll}0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$