- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
medium
ધારોકે $A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$ અને ધારોક $\alpha, \beta \in R$ એવાં છે કે જેથી $\alpha A^{2}+\beta A=2 I$, તો $\alpha+\beta$ નું મૂલ્ય ............ છે.
A
$-10$
B
$-6$
C
$6$
D
$10$
(JEE MAIN-2022)
Solution
Sol. Characteristic equation of matric $A$
$|A-\lambda I|=0$$\left|\begin{array}{cc}1-\lambda & 2 \\2 & -5-\lambda\end{array}\right|=0$
$\lambda^{2}+4 \lambda=1$
$A^{2}+4 A=I$
$2\,A^{2}+8 A=2 I$
Given that $\alpha A^{2}+\beta A=2\,I$
Comparing equation $(1)$ and $(2)$ we get
Standard 12
Mathematics