- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Let $P$ be an $m \times m$ matrix such that $P^2=P$. Then, $(I+P)^n$ equals
A
$I+P$
B
$I+n P$
C
$I+2^n P$
D
$I+\left(2^n-1\right) P$
(KVPY-2011)
Solution
(d)
Given, $\quad P^2=P$
$(I+P)^n=(I+I)^n$
$\left[\because P^2=P \Rightarrow P^{-1} P^2=P^{-1} P=P=I\right]$
$\Rightarrow \quad(I+P)^n=(2 I)^n$
$=2^n I$
$=\left(2^n-1+1\right) I$
$=I+\left(2^n-1\right) I$
$=I+\left(2^n-1\right) P \quad[\because I=P]$
Standard 12
Mathematics