Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Let $a, b$ and $c$ be three real numbers satisfying

$\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$................$(E)$

$1.$ If the point $P(a, b, c)$, with reference to $( E )$, lies on the plane $2 x+y+z=1$, then the value of $7 a+b+c$ is

$(A)$ $0$ $(B)$ $12$ $(C)$ $7$ $(D)$ $6$

$2.$ Let $\omega$ be a solution of $x^3-1=0$ with $\operatorname{Im}(\omega)>0$. If $a=2$ with $b$ and $c$ satisfying $( E )$, then the value of $\frac{3}{\omega^a}+\frac{1}{\omega^b}+\frac{3}{\omega^c}$ is equal to

$(A)$ $-2$ $(B)$ $2$ $(C)$ $3$ $(D)$ $-3$

$3.$ Let $b=6$, with $a$ and $c$ satisfying (E). If $\alpha$ and $\beta$ are the roots of the quadratic equation $a x^2+b x+c=0$, then

$\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^n$ is

$(A)$ $6$ $(B)$ $7$ $(C)$ $\frac{6}{7}$ $(D)$ $\infty$

Give the answer question $1,2$ and $3.$

A

$(D,A,B)$

B

$(A,B,C)$

C

$(D,D,B)$

D

$(C,B,B)$

(IIT-2011)

Solution

$1.$ Given

$a+8 b+7 c=0$

$9 a+2 b+3 c=0$

$\text { and } a+b+c=0$

Solving, we get $b=6 a, c=-7 a$

Since the point $P$ lies on the plane, so

$2 a+b+c=1$

$2 a+6 a-7 a=1$

$a=1$

Thus, $b =6$ and $c =-7$

Now the value of $7 a+b+c$

$=7+6-7$

$=6$

$2.$  The correct option is $A -2$

On multiplying matrices, we have

$\left[\begin{array}{lll}a+8 b+7 c & 9 a+2 b+3 c & 7 a+7 b+7 c\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

On solving the 3 equations, we get $b=6 a$ and $c=-7 a$

$\text { If } a=2 \text {, we get, } b=12, c=-14$

$\therefore \frac{3}{\omega^a}+\frac{1}{\omega^b}+\frac{3}{\omega^c}$

$\Rightarrow \frac{3}{\omega^2}+\frac{1}{\omega^{12}}+\frac{3}{\omega^{-14}}=\frac{3}{\omega^2}+1+3 \omega^2$

$=3 \omega+1+3 \omega^2$

$=1+3\left(\omega+\omega^2\right)=1-3=-2$

$3.$ Since, $a , b$ and c satisfies

$\left[\begin{array}{lll} a & b & c \end{array}\right]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$

So, we get the equations

$a+8 b+7 c=0$

$9 a+2 b+3 c=0$

$7 a+7 b+7 c=0 \text { or } a+b+c=0$

Since, $b =6$, so the equations become

$a+48+7 c=0 \ldots$

$9 a+12+3 c=0 .$

$a+6+c=0 \ldots . .3$

Subtracting $(3)$ from $(1)$, we get

$c=-7$

Using equation $(3)$, we get $a =1$.

So, we have $a =1, b=6, c =-7$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.