- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
Let $\alpha, \beta(\alpha \neq \beta)$ be the values of $m$, for which the equations $x+y+z=1 ; x+2 y+4 z=m$ and $x+4 y+10 z=m^2$ have infinitely many solutions. Then the value of $\sum_{n=1}^{10}\left(n^\alpha+n^\beta\right)$ is equal to :
A$560$
B$3080$
C$3410$
D$440$
(JEE MAIN-2025)
Solution
$\Delta=\left|\begin{array}{llc}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 10\end{array}\right|=1(20-16)-1(10-4)+1(4-2)$
$=4-6+2=0$
For infinite solutions
$\Delta_{x}=\Delta_{y}=\Delta_z=0$
$m^2-3 x+2=0$
$m=1,2$
$\alpha=1, \beta=2$
$\therefore \sum_{n=1}^{10}\left(n^\alpha+n^\beta\right)=\sum_{n=1}^{10} n^1+\sum_{n=1}^{10} n^2$
$= \frac{10(11)}{2}+\frac{10(11)(21)}{6}$
$= 55+385$
$= 440$
$=4-6+2=0$
For infinite solutions
$\Delta_{x}=\Delta_{y}=\Delta_z=0$
$m^2-3 x+2=0$
$m=1,2$
$\alpha=1, \beta=2$
$\therefore \sum_{n=1}^{10}\left(n^\alpha+n^\beta\right)=\sum_{n=1}^{10} n^1+\sum_{n=1}^{10} n^2$
$= \frac{10(11)}{2}+\frac{10(11)(21)}{6}$
$= 55+385$
$= 440$
Standard 12
Mathematics
Similar Questions
medium