माना $\left| {\,\begin{array}{*{20}{c}}{6i}&{ - 3i}&1\\4&{3i}&{ - 1}\\{20}&3&i\end{array}\,} \right| = x + iy$, तो

  • [IIT 1998]
  • A

    $x = 3,y = 1$

  • B

    $x = 0,y = 0$

  • C

    $x = 0,y = 3$

  • D

    $x = 1,y = 3$

Similar Questions

यदि $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (जहाँ $ x, y, z$ सभी शून्य नहीं हैं) का $x = 0$,$y = 0$,$z = 0$ के अतिरिक्त भी कोई हल है, तो  $a, b $ और $ c$  में सम्बन्ध है

  • [IIT 1978]

निकाय ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} =  - 6$ व  $3{x_1} + {x_2} + {x_3} =  - 18$ के हलों की संख्या होगी    

यदि रैखिक समीकरण निकाय $x+y+3 z=0$, $x+3 y+k^{2} z=0$, $3 x+y+3 z=0$ का किसी $k \in R$, के लिए, एक शून्येत्तर हल $( x , y , z )$ है, तो $x +\left(\frac{ y }{ z }\right)$ बराबर है -

  • [JEE MAIN 2020]

माना $a, b, c$ के लिए $b(a+c) \neq 0$ । यदि

$\left| {\begin{array}{*{20}{c}}a&{a + 1}&{a - 1}\\{ - b}&{b + 1}&{b - 1}\\c&{c - 1}&{c + 1}\end{array}} \right| + \left| {\begin{array}{*{20}{c}}{a + 1}&{b + 1}&{c - 1}\\{a - 1}&{b - 1}&{c + 1}\\{{{\left( { - 1} \right)}^{n + 2}} \cdot a}&{{{\left( { - 1} \right)}^{n + 1}} \cdot b}&{{{\left( { - 1} \right)}^n} \cdot c}\end{array}} \right| = 0$

तो $n$ का मान है

  • [AIEEE 2009]

यदि समीकरण $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$का एक मूल -$9 $ हो, तो अन्य दो मूल होंगे

  • [IIT 1983]