Gujarati
9.Straight Line
normal

Let $PS$ be the median of the triangle with vertices $P(2,\;2),\;Q(6,\; - \;1)$ and $R(7,\;3)$. The equation of the line passing through $(1, -1)$ and parallel to $PS$ is

A

$2x - 9y - 7 = 0$

B

$2x - 9y - 11 = 0$

C

$2x + 9y - 11 = 0$

D

$2x + 9y + 7 = 0$

(IIT-2000)

Solution

(d) $S$ = midpoint of $QR = \left( {\frac{{6 + 7}}{2},\,\frac{{ – 1 + 3}}{2}} \right) = \left( {\frac{{13}}{2},\,1} \right)$

$ ‘m’$ of $PS = \frac{{2 – 1}}{{2 – \frac{{13}}{2}}} = – \frac{2}{9}$,

 The required equation is $y + 1 = \frac{{ – 2}}{9}(x – 1)$

i.e.,$2x + 9y + 7 = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.