- Home
- Standard 11
- Mathematics
9.Straight Line
normal
Let $PS$ be the median of the triangle with vertices $P(2,\;2),\;Q(6,\; - \;1)$ and $R(7,\;3)$. The equation of the line passing through $(1, -1)$ and parallel to $PS$ is
A
$2x - 9y - 7 = 0$
B
$2x - 9y - 11 = 0$
C
$2x + 9y - 11 = 0$
D
$2x + 9y + 7 = 0$
(IIT-2000)
Solution
(d) $S$ = midpoint of $QR = \left( {\frac{{6 + 7}}{2},\,\frac{{ – 1 + 3}}{2}} \right) = \left( {\frac{{13}}{2},\,1} \right)$
$ ‘m’$ of $PS = \frac{{2 – 1}}{{2 – \frac{{13}}{2}}} = – \frac{2}{9}$,
The required equation is $y + 1 = \frac{{ – 2}}{9}(x – 1)$
i.e.,$2x + 9y + 7 = 0$.
Standard 11
Mathematics