- Home
- Standard 12
- Mathematics
Let $A =$ $ \left[ {\begin{array}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{array}}\right]$ , then
$A^2 - 4A - 5I_3 = 0$
$A^{-1} = \frac{1}{5} (A - 4I_3)$
$A^2$ is invertible
All of the above
Solution
$A^2 =$ $ \left[ {\begin{array}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{array}}\right]$ $ \left[ {\begin{array}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{array}}\right]$ $=$ $\left[ {\begin{array}{*{20}{c}}9&8&8\\8&9&8\\8&8&9\end{array}} \right]$
We have $A^2 – 4A – 5I_3$
$=$ $\left[ {\begin{array}{*{20}{c}}9&8&8\\8&9&8\\8&8&9\end{array}} \right]$ $- 4$ $ \left[ {\begin{array}{*{20}{c}}1&2&2\\2&1&2\\2&2&1\end{array}}\right]$ $- 5$ $\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$ $= O$
==> $5I_3 = A^2 – 4A = A(A – 4I_3)$
==>$I_3 = A$ $\left[ {\frac{1}{5}(A – 4{I_3})} \right]$
==> $A^{-1} =$ $\frac{1}{5}(A – 4{I_3})$
Note that $|A| = 5$. Since $|A^3| = |A|^3 = 5^3 \ne 0, A^3$ is invertibleSimilarly, $A^2$ is invertible