Let $x_1, x_2, x_3, x_4, .......... , x_n$ be $n$ observations and let $\bar x$ be their arithmetic mean and $\sigma ^2$ be their variance.

Statement $-1$ : Variance of observations $2x_1, 2x_2, 2x_3, ......, 2x_n$ is $4\sigma ^2$ .

Statement $-2$ : Arithmetic mean of $2x _1, 2x_2, 2x_3, ......, 2x_n$ is $4\bar x$ .

  • A

    Statement $-1$ is true, statement $-2$ is true and statement $-2$ is $NOT$ the correct explanation for statement $-1$

  • B

    Statement $-1$ is true, statement $-2$ is false

  • C

    Statement $-1$ is false, stateemnt $-2$ is true

  • D

    Statement $-1$ is true, statement $-2$ is true and statement $-2$ is correct explanation for statement $-1$

Similar Questions

If $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ and $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ then the standard deviation of the $9$ items  ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ is :

  • [JEE MAIN 2018]

The first of the two samples in a group has $100$ items with mean $15$ and standard deviation $3 .$ If the whole group has $250$ items with mean $15.6$ and standard deviation $\sqrt{13.44}$, then the standard deviation of the second sample is:

  • [JEE MAIN 2021]

If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of first four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to

  • [JEE MAIN 2024]

Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :

  • [JEE MAIN 2024]

Find the variance and standard deviation for the following data:

${x_i}$ $4$ $8$ $11$ $17$ $20$ $24$ $32$
${f_i}$ $3$ $5$ $9$ $5$ $4$ $3$ $1$