- Home
- Standard 11
- Mathematics
Let $x_1, x_2, x_3, x_4, .......... , x_n$ be $n$ observations and let $\bar x$ be their arithmetic mean and $\sigma ^2$ be their variance.
Statement $-1$ : Variance of observations $2x_1, 2x_2, 2x_3, ......, 2x_n$ is $4\sigma ^2$ .
Statement $-2$ : Arithmetic mean of $2x _1, 2x_2, 2x_3, ......, 2x_n$ is $4\bar x$ .
Statement $-1$ is true, statement $-2$ is true and statement $-2$ is $NOT$ the correct explanation for statement $-1$
Statement $-1$ is true, statement $-2$ is false
Statement $-1$ is false, stateemnt $-2$ is true
Statement $-1$ is true, statement $-2$ is true and statement $-2$ is correct explanation for statement $-1$
Solution
If each observations is multiplied by a constant $k$ then their mean is multiplied with $k$ and their variance is multiplied by $k^2$ .
Similar Questions
The variance $\sigma^2$ of the data is $ . . . . . .$
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |