- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
Let $PQ$ and $RS$ be the tangent at the extremities of the diameter $PR$ of a circle of radius $r$. If $PS$ and $RQ$ intersect at a point $X$ on the circumference of the circle, then $(PQ.RS)$ is equal to
A
$(PX).(RX)$
B
$(QX).(SX)$
C
$(PX)^2 + (RX)^2$
D
$(QX)^2 + (SX)^2$
Solution

$\frac{{PQ}}{{RP}} = \frac{{PR}}{{RS}}$
$PQ.RS = {\left( {PR} \right)^2}$
$ = {\left( {PX} \right)^2} + {\left( {RX} \right)^2}$
Standard 11
Mathematics