Gujarati
Hindi
10-1.Circle and System of Circles
normal

Let $PQ$ and $RS$ be the tangent at the extremities of the diameter $PR$ of a circle of radius $r$. If $PS$ and $RQ$ intersect at a point $X$ on the circumference of the circle, then $(PQ.RS)$ is equal to

A

$(PX).(RX)$

B

$(QX).(SX)$

C

$(PX)^2 + (RX)^2$

D

$(QX)^2 + (SX)^2$

Solution

$\frac{{PQ}}{{RP}} = \frac{{PR}}{{RS}}$

$PQ.RS = {\left( {PR} \right)^2}$

$ = {\left( {PX} \right)^2} + {\left( {RX} \right)^2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.