- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Matrix $A$ satisfies $A^2 = 2A - I$ where $I$ is the identity matrix then for $n \ge 2$, $A^n$ is equal to $(n \in N)$
A
$nA - I$
B
$2^{n - 1}A - (n - 1)I$
C
$nA - (n - 1)I$
D
$2^{n - 1}A - I$
Solution
$A^2 = 2A – I$ ==>$A^3 = 2A^2 – IA$
$= 2(2A – I) – A$
$A^3 = 3A – 2I$
$A^4 = 3A^2 – 2A$
$= 3(2A – I) – 2A$
$A^4 = 4A – 3I$
$A^5 = 5A – 4I$
$A^n = nA – (n – 1)I$
Standard 12
Mathematics