Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Matrix $A$ satisfies $A^2 = 2A - I$ where $I$ is the identity matrix then for $n \ge 2$, $A^n$ is equal to $(n \in N)$

A

$nA - I$

B

$2^{n - 1}A - (n - 1)I$

C

$nA - (n - 1)I$

D

$2^{n - 1}A - I$

Solution

$A^2 = 2A – I$ ==>$A^3 = 2A^2 – IA$
                                  $= 2(2A – I) – A$
                            $A^3 = 3A – 2I$
                             $A^4 = 3A^2 – 2A$
                                    $= 3(2A – I) – 2A$
                             $A^4 = 4A – 3I$
                             $A^5 = 5A – 4I$

                                \vdots
                             $A^n = nA – (n – 1)I$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.