Number of common tangents to the circles
$x^2 + y^2 -2x + 4y -4 = 0$ and
$x^2 + y^2 -8x -4y + 16 = 0 $ is-
$0$
$2$
$3$
$4$
The value of $'c'$ for which the set, $\{(x, y) | x^2 + y^2 + 2x \le 1 \} \cap \{(x, y) | x - y + c \ge 0\}$ contains only one point in common is :
If $y = 2x$ is a chord of the circle ${x^2} + {y^2} - 10x = 0$, then the equation of the circle of which this chord is a diameter, is
Let a circle $C_1 \equiv x^2 + y^2 - 4x + 6y + 1 = 0$ and circle $C_2$ is such that it's centre is image of centre of $C_1$ about $x-$axis and radius of $C_2$ is equal to radius of $C_1$, then area of $C_1$ which is not common with $C_2$ is -
If the circles ${x^2} + {y^2} + 2ax + cy + a = 0$ and ${x^2} + {y^2} - 3ax + dy - 1 = 0$ intersect in two distinct points $P$ and $Q$ then the line $5x + by - a = 0$ passes through $P$ and $Q$ for
Radius of circle touching $y-$axis at point $P(0,2)$ and circle $x^2 + y^2 = 16$ internally-