- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Number of value of $'a'$ for which the system of equations,$A^2 x + (2 - a) y = 4 + a^2$ $a x + (2 a - 1) y = a^5 - 2$ possess no solution is
A
$0$
B
$1$
C
$2$
D
infinite
Solution
$\frac{{{a^2}}}{a}$ $=$ $\frac{{2\,\, – \,\,a}}{{2\,a\,\, – \,\,1}}$ $\ne\, \frac{{4\,\, + \,\,{a^2}}}{{{a^5}\,\, – \,\,2}}$ .
$={- 1, 1}$
Standard 12
Mathematics
Similar Questions
Let $\alpha$ and $\beta$ be the distinct roots of the equation $x^2+x-1=0$. Consider the set $T=\{1, \alpha, \beta\}$. For a $3 \times 3$ matrix $M=\left(a_{\ell}\right) 3 \times 3_3$, define $R_l=a_{l 1}+a_{l 2}+a_\beta$ and $C_j=a_{1 j}+a_{2 l}+a_{3 j}$ for $i=1,2,3$ and $j=1,2,3$
Match each entry in $List-I$ to the correct entry in $List-II$.
$List-I$ | $List-II$ |
($P$) The number of matrices $M=\left(a_{i j}\right)_3 \times 3$ with all entries in $T$ such that $R_i=C_j=0$ for all $i, j$ is | ($1$) ($1$) |
($Q$) The number of symmetric matrices $M=\left(a_{i j}\right) 3 \times 3$ with all entries in $T$ such that $C_j=0$ for all $j$ is | ($2$) ($2$) |
($R$) Let $M=\left(a_{i j}\right) 3 \times 3$ be a skew symmetric matrix such that $a_{i j} \in T$ for $i>j$. Then the number of elements in the set $\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right): x, y \cdot z \in R, M\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}a_{12} \\ 0 \\ -a_{23}\end{array}\right)\right\}$ is is | ($3$) Infinite |
($S$) Let $M=\left(a_{i j}\right)_3 \times 3$ be a matrix with all entries in $T$ such that $R_i=0$ for all $i$. Then the absolute value of the determinant of $M$ is | ($4$) ($6$) |
($5$) ($0$) |
The correct option is