Gujarati
Hindi
11.Thermodynamics
normal

One mole of an ideal diatomic gas undergoes a transition from $A$ to $B$ along a path $AB$ as shown in the figure, The change in internal energy of the gas during the transition is

A

$-20\, kJ$

B

$20\, J$

C

$-12\, kJ$

D

$20\, kJ$

Solution

$\Delta \mathrm{U}=\mathrm{n} \mathrm{C}_{\mathrm{V}} \Delta \mathrm{T} \quad $ and $ \quad \mathrm{T}=\frac{\mathrm{PV}}{\mathrm{nR}}$

so $\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}=| \frac{\mathrm{P}_{2} \mathrm{V}_{2}-\mathrm{P}_{1} \mathrm{V}_{1}}{\mathrm{n} \mathrm{R}}$

so $\Delta \mathrm{U}=\frac{\mathrm{nR}}{\gamma-1}\left(\frac{\mathrm{P}_{2} \mathrm{V}_{2}-\mathrm{P}_{1} \mathrm{V}_{1}}{\mathrm{nR}}\right)=\frac{\mathrm{P}_{2} \mathrm{V}_{2}-\mathrm{P}_{1} \mathrm{V}_{1}}{\gamma-1}$

$\Rightarrow \Delta \mathrm{U}=\frac{-8 \times 10^{3}}{2 / 5}=-20 \mathrm{\,kJ}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.