Gujarati
Hindi
11.Thermodynamics
normal

One mole of an ideal gas at initial temperature $T$, undergoes a quasi-static process during which the volume $V$ is doubled. During the process, the internal energy $U$ obeys the equation $U=a V^3$, where $a$ is a constant. The work done during this process is

A

$\frac{3 R T}{2}$

B

$\frac{5 R T}{2}$

C

$\frac{5 R T}{3}$

D

$\frac{7 R T}{3}$

(KVPY-2011)

Solution

(d)

In the process given, internal energy is

$U=a V^3$

$\Rightarrow \quad \frac{f n R T}{2} =a V^3$

where, $f=$ degree of freedom $=3$ (for ideal gas) and $n=$ number of moles $=1$.

$\Rightarrow \quad \frac{3}{2} R T=a V^3$

$\Rightarrow \quad \frac{3}{2} p V=a V^3 \quad[\because p V=R T]$

So, pressure in this process is given by

$p=\frac{2 a}{3} V^2$

Now, work done during the process is

$W=\int \limits_V^{2 V} p d V=\int \limits_V^{2 V} \frac{2 a}{3} V^2 d V$

$=\frac{2 a}{3} \times \frac{1}{3}\left((2 V)^3-V^3\right)$

$=\frac{2 a}{9}\left(7 V^3\right)$

$=\frac{2}{9} \times 7 \times \frac{3}{2} R T \quad\left[\because a V^3=\frac{3}{2} R^2 T\right]$

$=\frac{7}{3} R T$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.