Gujarati
Hindi
11.Thermodynamics
hard

One mole of an ideal gas having initial volume $V$, pressure $2P$ and temperature $T$ undergoes a cyclic process $ABCDA$ as shown below : The net work done in the complete cycle is

A

zero

B

$\frac{1}{2} RT\,ln\,2$

C

$RT\,ln\,2$

D

$\frac{3}{2} RT\,ln\,2$

Solution

Wrok done, $\Delta \mathrm{W}=\mathrm{P} \Delta \mathrm{V}$

At constant pressure,

$\Delta \mathrm{W}=\mathrm{P}\left(\mathrm{V}_{\mathrm{t}}-\mathrm{V}_{\mathrm{i}}\right)=\mathrm{nR}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$

At constant temperature,

$\Delta \mathrm{W}=\mathrm{nRT} \ln \left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)=\mathrm{nRT} \ln \left(\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{V}_{\mathrm{f}}}\right)$

Therefore, work done for path $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and

$DA$ respectively will be.

$\Delta \mathrm{W}_{\mathrm{AB}}=1 \times \mathrm{R} \times(2 \mathrm{T}-\mathrm{T})=\mathrm{RT}$

$\Delta \mathrm{W}_{\mathrm{BC}}=1 \times \mathrm{R} \times 2 \mathrm{T} \ln \left(\frac{2 \mathrm{P}}{\mathrm{P}}\right)=2 \mathrm{RT} \ln 2$

$\Delta \mathrm{W}_{\mathrm{CD}}=1 \times \mathrm{R} \times(\mathrm{T}-2 \mathrm{T})=-\mathrm{RT}$

$\Delta W_{D A}=1 \times R \times T \ln \left(\frac{P}{2 P}\right)=R T \ln \left(\frac{1}{2}\right)$

Net work done in the complete cycle is, $\Delta \mathrm{W}=\Delta \mathrm{W}_{\mathrm{AB}}+\Delta \mathrm{W}_{\mathrm{BC}}+\Delta \mathrm{W}_{\mathrm{CD}}+\Delta \mathrm{W}_{\mathrm{DA}}$

$=\mathrm{RT}+2 \mathrm{RT} \ln 2-\mathrm{RT}+\mathrm{RT} \ln \left(\frac{1}{2}\right)$

$=2 \mathrm{RT} \ln 2+\mathrm{RT} \ln 1-\mathrm{RT} \ln 2$

$=2 \mathrm{RT} \ln 2-\mathrm{RT} \ln 2$

$(\because \ln 1=0)$

$=\mathrm{RT} \ln 2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.