- Home
- Standard 9
- Mathematics
2. Polynomials
medium
One of the zeroes of the polynomial $2 x^{2}+7 x-4$ is
A
$2$
B
$-\frac{1}{2}$
C
$\frac{1}{2}$
D
$-2$
Solution
We have $p(x)=2 x^{2}+7 x+4$
(a) $p(2)=2(2)^{2}+7(2)-4$
$=8+14-4$
$=18 \neq 0$
(b) $p\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{2}+7\left(-\frac{1}{2}\right)-4$
$=2 \times \frac{1}{4}-\frac{7}{2}-4=\frac{1}{2}-\frac{7}{2}-4$
$=-3-4$
$=-7 \neq 0$
(C) $p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{2}+7\left(\frac{1}{2}\right)-4$
$=2 \times \frac{1}{4}+\frac{7}{2}-4=\frac{1}{2}+\frac{7}{2}-4=4-4=0$
(d) $p(-2)=2(-2)^{2}+7(-2)-4$
$=8-14-4=-10 \neq 0$
As $p\left(\frac{1}{2}\right)=0,$ we say that $\frac{1}{2}$ is a zero of the polynomial.
Hence, $\frac{1}{2}$ is one of the zero of the polynomial $2 x^{2}+7 x-4.$
Hence, $(c)$ is the correct answer.
Standard 9
Mathematics