Out of gravitational, electromagnetic, Vander Waals, electrostatic and nuclear forces; which two are able to provide an attractive force between two neutrons
Electrostatic and gravitational
Electrostatic and nuclear
Gravitational and nuclear
Some other forces like Vander Waals
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
A charge of $Q$ coulomb is placed on a solid piece of metal of irregular shape. The charge will distribute itself
Consider three point objects $P, Q$ and $R \cdot P$ and $Q$ repel each other, while $P$ and $R$ attract. What is the nature of force between $Q$ and $R$ ?
Two point charges $3 \times 10^{-6} \,C$ and $8 \times 10^{-6} \, C$ repel each other by a force of $6 \times 10^{-3} \, N$. If each of them is given an additional charge $-6 \times 10^{-6} \, C$, the force between them will be
An infinite number of point charges, each carrying $1 \,\mu C$ charge, are placed along the y-axis at $y=1\, m , 2\, m , 4 \,m , 8\, m \ldots \ldots \ldots \ldots \ldots$
The total force on a $1 \,C$ point charge, placed at the origin, is $x \times 10^{3}\, N$. The value of $x$, to the nearest integer, is .........
[Take $\left.\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,Nm ^{2} / C ^{2}\right]$