Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2\, s$ will be ............ $\mathrm{m}/ \mathrm{s}$
$1$
$4$
$2$
$2\sqrt 2$
Underline the correct alternative :
$(a)$ When a conservative force does positive work on a body, the potential energy of the body increases/decreases/remains unaltered.
$(b)$ Work done by a body against friction always results in a loss of its kinetic/potential energy.
$(c)$ The rate of change of total momentum of a many-particle system is proportional to the external force/sum of the internal forces on the system.
$(d)$ In an inelastic collision of two bodies, the quantities which do not change after the collision are the total kinetic energy/total linear momentum/total energy of the system of two bodies.
In the non-relativistic regime, if the momentum, is increased by $100\%$, the percentage increase in kinetic energy is
After head on elastic collision between two balls of equal masses , one is observed to have a speed of $3\,\,m/s$ along positive $x-$ axis and the other has a speed of $2\,\,m/s$ along negative $x$ axis. The original velocities of the balls are
A body of mass $2\, kg$ moving with a velocity of $3\, m/sec$ collides head on with a body of mass $1\, kg$ moving in opposite direction with a velocity of $4\, m/sec$. After collision, two bodies stick together and move with a common velocity which in $m/sec$ is equal to
A mass $m$ slips along the wall of a semispherical surface of radius $R$. The velocity at the bottom of the surface is