Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $watt$ . Here, $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$, the velocity of particle at time $t = 2\, s$ will be ............ $\mathrm{m}/ \mathrm{s}$
$1$
$4$
$2$
$2\sqrt 2$
Work equal to $25\,J$ is done on a mass of $2\,kg$ to set it in motion. If whole of it is used to increase the kinetic energy then velocity acquired by the mass is ............ $\mathrm{m}/ \mathrm{s}$
A force acts on a $3.0\ g$ particle in such a way that the position of the particle as a function of time is given by:
$x = 3t - 4t^2 + t^3$
Where $x$ is in metres and $t$ is in seconds. The work done during the first $4\ s$ is ................. $\mathrm{mJ}$
The diagram to the right shows the velocity-time graph for two masses $R$ and $S$ that collided elastically. Which of the following statements is true?
$(I)$ $R$ and $S$ moved in the same direction after the collision.
$(II)$ Kinetic energy of the system $(R$ & $S)$ is minimum at $t = 2$ milli sec.
$(III)$ The mass of $R$ was greater than mass of $S.$
Two identical balls $A$ and $B$ are released from the positions shown in figure. They collide elastically on horizontal portion $MN$. The ratio of the heights attained by $A$ and $B$ after collision will be (neglect friction)
After head on elastic collision between two balls of equal masses , one is observed to have a speed of $3\,\,m/s$ along positive $x-$ axis and the other has a speed of $2\,\,m/s$ along negative $x$ axis. The original velocities of the balls are