Prove that $\sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
By Binomial Theorem,
$\sum\limits_{r = 0}^n {{\,^n}{C_r}{a^{n - r}}{b^r} = {{\left( {a + b} \right)}^n}} $
By putting $b=3$ and $a=1$ in the above equation, we obtain
$\sum\limits_{r = 0}^n {{\,^n}{C_r}{{\left( 1 \right)}^{n - r}}{{\left( 3 \right)}^r} = {{\left( {1 + 3} \right)}^n}} $
$ \Rightarrow \sum\limits_{r = 0}^n {{3^r}{\,^n}{C_r} = {4^n}} $
Hence proved.
In the expansion of the following expression $1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ the coefficient of ${x^k}(0 \le k \le n)$ is
The term independent of $x$ in the expansion of $\left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1,$ is equal to ....... .
If the coefficient of ${x^7}$ in ${\left( {a{x^2} + \frac{1}{{bx}}} \right)^{11}}$ is equal to the coefficient of ${x^{ - 7}}$ in ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$, then $ab =$
The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is
The coefficient of ${x^{32}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is