3.Trigonometrical Ratios, Functions and Identities
easy

સાબિત કરો કે : $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$ $=\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x$

$=\frac{1}{2}[2 \sin (n+1) x \sin (n+2) x+2 \cos (n+1) x \cos (n+2) x]$

$=\frac{1}{2}\left[\begin{array}{c}\cos \{(n+1) x-(n+2) x\}-c i s\{(n+1) x+(n+2) x\} \\ +\cos \{(n+1) x+(n+2) x\}+\cos \{(n+1) x-(n+2) x\}\end{array}\right]$

$\left[\begin{array}{c}\because-2 \sin A \sin B=\cos (A+B)-\cos (A-B) \\ 2 \cos A \cos B=\cos (A+B)+\cos (A-B)\end{array}\right]$

$=\frac{1}{2} \times 2 \cos \{(n+1) x-(n+2) x\}$

$=\cos (-x)=\cos x= R . H.S$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.