- Home
- Standard 10
- Mathematics
8. Introduction to Trigonometry
medium
સાબિત કરો :
$\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$
Option A
Option B
Option C
Option D
Solution

L.H.S.$=\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{\sin \theta(1+\cos \theta)}$
$=\frac{\sin ^{2} \theta+1+\cos ^{2} \theta+2 \cos \theta}{\sin \theta(1+\cos \theta)} \quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=\frac{1+1+2 \cos \theta}{\sin \theta(1+\cos \theta)}$ $\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$=\frac{2(1+\cos \theta)}{\sin \theta(1+\cos \theta)}=\frac{2}{\sin \theta}$
$=2 \operatorname{cosec} \theta=$ R.H.S.$\left[\because \operatorname{cosec} \theta=\frac{1}{\sin \theta}\right]$
Standard 10
Mathematics