3.Trigonometrical Ratios, Functions and Identities
medium

સાબિત કરો કે : $(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$

Option A
Option B
Option C
Option D

Solution

$L.H.S.$ $=(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x$

$=\sin 3 x \sin x+\sin ^{2} x+\cos 3 x \cos x-\cos ^{2} x$

$=\cos 3 x \cos x+\sin 3 x \sin x-\left(\cos ^{2}-\sin ^{2} x\right)$

$=\cos (3 x-x)-\cos 2 x \quad[\cos (A-B)=\cos A \cos B+\sin A \sin B]$

$=\cos 2 x-\cos 2 x$

$=0$

$= R . H.S.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.