- Home
- Standard 11
- Mathematics
सिद्ध कीजिए
$\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$
Solution
It is known that
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right), \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$
$L.H.S.$ $=\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}$
$=\frac{\left[2 \sin \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \sin \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}$
$=\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 6 x]}$
$=\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]}$
$=\tan 6 x$
$= R . H.S.$