ગણ $A$ માં $3$ સભ્ય છે અને $B$ માં $4$ સભ્ય છે . જો $A$ થી $B$ માં એક-એક વિધેય ની સંખ્યા મેળવો.
$144$
$12$
$24$
$64$
વિધેય $f$ એ ગણ $A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ થી ગણ $B=\left\{n^{2}: n \in N\right\}$ કે જેથી દરેક $x \in A$ માટે $f(x) \leq(x-3)^{2}+1$ તેવા વિધેય $f$ ની સંખ્યા મેળવો.
જો $x$ એ શૂન્યતર સંમેય સંખ્યા છે અને $y$ એ અસંમેય સંખ્યા છે , તો $xy$ મેળવો.
વક્ર $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$,એ $x-$અક્ષને જ્યાં છેદે તે બિંદુઓની સંખ્યા $.........$ છે.
સાબિત કરો કે વિધેય $f: N \rightarrow N ,$ $f(1)=f(2)=1$ અને પ્રત્યેક $x>2$ માટે $f(x)=x-1$, દ્વારા વ્યાખ્યાયિત હોય તો વ્યાપ્ત છે, પરંતુ એક-એક નથી.
વિધેય $f:\left[ { - 1,1} \right] \to R$ જ્યા $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ ધ્યાનમા લ્યો. જ્યા $\alpha _i\ 's$ એ ધન અચળ હોય અને $n \in N < 100$ હોય તો $f(x)$ એ .................. વિધેય છે.