- Home
- Standard 11
- Physics
Starting from rest a body slides down a $45^{\circ}$ ind ined plane in twice the time it takes to slide down the same distance in the absence of friction. The coefficient of friction between the body and the inclined plane is:
$0.33$
$0.25$
$0.75$
$0.80$
Solution

Let length is $\ell$ of inclined plane, then $f_r=\mu N =\mu mg \cos \theta$
$mg \sin \theta- f _{ r }= ma$
$mg \sin \theta-\mu mg \cos \theta= ma$
Now
$\ell=\frac{1}{2} at ^2=\frac{1}{2} g (\sin \theta-\mu \cos \theta) t ^2$
$\text { Now } \ell_1=\ell_2$
$\ell_2=\frac{1}{2} g \sin \theta\left(\frac{ t ^2}{2}\right)$
$\frac{1}{2} g(\sin \theta-\mu \cos \theta) t ^2=\frac{1}{2} g(\sin \theta-0 \times \cos \theta)\left(\frac{ t ^2}{2}\right)$
$4(\sin \theta-\mu \cos \theta)=\sin \theta$
$\mu=\frac{3}{4}=0.75$