Statement $-1$ : Capacitor can be used in $a.c.$ circuit in place of choke coil.
Statement $-2$ : Capacitor blocks $d.c.$ and allows $a.c.$ only.

  • A

    Statement$-1$ is true, Statement$-2$ is true; Statement$-2$ is not the correct explanation of Statement$-1.$

  • B

    Statement$-1$ is false, Statement$-2$ is true.

  • C

    Statement$-1$ is true, Statement$-2$ is false.

  • D

    Statement$-1$ is true, Statement$-2$ is true; Statement$-2$ is the correct explanation of Statement$-1.$

Similar Questions

Match the following

Currents                                     $r.m.s.$ values

(1)${x_0}\sin \omega \,t$                               (i)$ x_0$

(2)${x_0}\sin \omega \,t\cos \omega \,t$                  (ii)$\frac{{{x_0}}}{{\sqrt 2 }}$

(3)${x_0}\sin \omega \,t + {x_0}\cos \omega \,t$        (iii) $\frac{{{x_0}}}{{(2\sqrt 2 )}}$

The alternating current in a circuit is described by the graph shown in figure. Show rms current in this graph.

If an $AC$ main supply is given to be $220\,V$. The average $emf$ during a positive half cycle will be.....$V$

  • [AIIMS 2009]

The $r.m.s.$ voltage of the wave form shown is

The instantaneous voltages at three terminals marked $\mathrm{X}, \mathrm{Y}$ and $\mathrm{Z}$ are given by

$V_x=V_0 \sin \omega t$ $V_y=V_0 \sin \left(\omega t+\frac{2 \pi}{3}\right) \text { and }$ $V_z=V_0 \sin \left(\omega t+\frac{4 \pi}{3}\right)$

An ideal voltmeter is configured to read rms value of the potential difference between its terminals. It is connected between points $\mathrm{X}$ and $\mathrm{Y}$ and then between $\mathrm{Y}$ and $\mathrm{Z}$. The reading(s) of the voltmeter will be

$[A]$ $\mathrm{V}_{\mathrm{XY}}^{\mathrm{mms}}=\mathrm{V}_0 \sqrt{\frac{3}{2}}$

$[B]$ $\mathrm{V}_{\mathrm{YZ}}^{\mathrm{mms}}=\mathrm{V}_0 \sqrt{\frac{1}{2}}$

$[C]$ $\mathrm{V}_{\mathrm{XY}}^{\mathrm{mms}}=\mathrm{V}_0$

$[D]$ independent of the choice of the two terminals

  • [IIT 2017]