Statement $-1$ : Capacitor can be used in $a.c.$ circuit in place of choke coil.
Statement $-2$ : Capacitor blocks $d.c.$ and allows $a.c.$ only.
Statement$-1$ is true, Statement$-2$ is true; Statement$-2$ is not the correct explanation of Statement$-1.$
Statement$-1$ is false, Statement$-2$ is true.
Statement$-1$ is true, Statement$-2$ is false.
Statement$-1$ is true, Statement$-2$ is true; Statement$-2$ is the correct explanation of Statement$-1.$
Match the following
Currents $r.m.s.$ values
(1)${x_0}\sin \omega \,t$ (i)$ x_0$
(2)${x_0}\sin \omega \,t\cos \omega \,t$ (ii)$\frac{{{x_0}}}{{\sqrt 2 }}$
(3)${x_0}\sin \omega \,t + {x_0}\cos \omega \,t$ (iii) $\frac{{{x_0}}}{{(2\sqrt 2 )}}$
The alternating current in a circuit is described by the graph shown in figure. Show rms current in this graph.
If an $AC$ main supply is given to be $220\,V$. The average $emf$ during a positive half cycle will be.....$V$
The $r.m.s.$ voltage of the wave form shown is
The instantaneous voltages at three terminals marked $\mathrm{X}, \mathrm{Y}$ and $\mathrm{Z}$ are given by
$V_x=V_0 \sin \omega t$ $V_y=V_0 \sin \left(\omega t+\frac{2 \pi}{3}\right) \text { and }$ $V_z=V_0 \sin \left(\omega t+\frac{4 \pi}{3}\right)$
An ideal voltmeter is configured to read rms value of the potential difference between its terminals. It is connected between points $\mathrm{X}$ and $\mathrm{Y}$ and then between $\mathrm{Y}$ and $\mathrm{Z}$. The reading(s) of the voltmeter will be
$[A]$ $\mathrm{V}_{\mathrm{XY}}^{\mathrm{mms}}=\mathrm{V}_0 \sqrt{\frac{3}{2}}$
$[B]$ $\mathrm{V}_{\mathrm{YZ}}^{\mathrm{mms}}=\mathrm{V}_0 \sqrt{\frac{1}{2}}$
$[C]$ $\mathrm{V}_{\mathrm{XY}}^{\mathrm{mms}}=\mathrm{V}_0$
$[D]$ independent of the choice of the two terminals