The alternating current in a circuit is described by the graph shown in figure. Show rms current in this graph.
From graph diagram maximum current $\mathrm{I}_{1}=1 \mathrm{~A}$ and $\mathrm{I}_{2}=-2 \mathrm{~A}$ $\therefore$ Average maximum current $\mathrm{I}_{\mathrm{m}}=\sqrt{(1)^{2}+(-2)^{2}}$
$\therefore \mathrm{I}_{\mathrm{m}}=\sqrt{5} \mathrm{~A}$
Now, $\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}}$
$=\frac{\sqrt{5}}{\sqrt{2}}=\sqrt{\frac{5}{2}}=\sqrt{2.5}=1.58 \mathrm{~A}$
$\therefore \mathrm{I}_{\mathrm{rms}} \approx 1.6 \mathrm{~A}$ is shown in below graph.
What are $DC$ signals and $AC$ signals ? Why do we preferred an $AC$ signal ?
The mean value of current for half cycle for a current variation shown by the graph is
An alternating voltage $\mathrm{V}(\mathrm{t})=220 \sin 100 \ \pi \mathrm{t}$ volt is applied to a purely resistive load of $50\ \Omega$. The time taken for the current to rise from half of the peak value to the peak value is:
Explain electrical energy when an ac current passes through a resistor.
A current in circuit is given by $i = 3 + 4\, sin\, \omega t$. Then the effective value of current is