Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$B^{\prime}$
Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9\} .$ Find $A^{\prime}$
If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x \in N$ and $2x + 1\, > \,10\} $
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$B=\{d, e, f, g\}$