The acceleration of a train between two stations is shown in the figure. The maximum speed of the train is $............\,m/s$
$60$
$30$
$120$
$90$
A body is at rest at $x=0$. At $t=0$, it starts moving in the positive $x-$ direction with a constant acceleration. At the same instant another body passes through $x=0$ moving in the positive $x$ direction with a constant speed. The position of the first body is given by $x_{1} (t)$ after time $t$ and that of the second body by $x_{2}(t)$ after the same time interval. Which of the following graphs correctly describe $\left(x_{1}-x_{2}\right)$ as a function of time $t$?
A body starts from the origin and moves along the $X-$axis such that the velocity at any instant is given by $(4{t^3} - 2t)$, where $t$ is in sec and velocity in$m/s$. What is the acceleration of the particle, when it is $2\, m$ from the origin..........$m/{s^2}$
The velocity-displacement graph describing the motion of a bicycle is shown in the figure.
The acceleration-displacement graph of the bicycle's motion is best described by
An object is moving with variable speed, then
For the velocity-time graph shown in the figure, in a time interval from $t=0$ to $t=6\,s$, match the following columns.
Colum $I$ | Colum $II$ |
$(A)$ Change in velocity | $(p)$ $-5 / 3\,Sl$ unit |
$(B)$ Average acceleration | $(q)$ $-20\,SI$ unit |
$(C)$ Total displacement | $(r)$ $-10\,SI$ unit |
$(D)$ Acceleration at $t=3\,s$ | $(s)$ $-5\,SI$ unit |