The apparent frequency of a sound wave as heard by an observer is $10\%$ more than the actual frequency. If the velocity of sound in air is $330\, m/sec$, then
$(i)$ The source may be moving towards the observer with a velocity of $30\,ms^{-1}$
$(ii)$ The source may be moving towards the observer with a velocity of $33\,ms^{-1}$
$(iii)$ The observer may be moving towards the source with a velocity of $30\,ms^{-1}$
$(iv)$ The observer may be moving towards the source with a velocity of $33\,ms^{-1}$
$ii, iv$
$ii, iii$
$i, iv$
$iii, iv$
The length of open organ pipe is $L$ and fundamental frequency is $f$. Now it is immersed into water upto half of its length now the frequency of organ pipe will be
A plan wave of sound traveling in air is incident upon a plan surface of a liquid. The angle of incidence is $60^o$. The speed of sound in air is $300\ m/s$ and in the liquid it is $600\ m/s$. Assume Snell's law to be valid for sound waves
When a wave travels in a medium, the particle displacement is given by : $y = a\,\sin \,2\pi \left( {bt - cx} \right)$ where $a, b$ and $c$ are constants. The maximum particle velocity will be twice the wave velocity if
A flute which we treat as a pipe open at both ends is $34\, cm$ along. The fundamental frequency of the flute when all its holes are covered is .... $Hz$ [Take velocity of sound in air $= 340\, m/s$ ]
The equation of transverse wave in stretched string is $y = 5\,\sin \,2\pi \left[ {\frac{t}{{0.04}} - \frac{x}{{50}}} \right]$ Where distances are in cm and time in second. The wavelength of wave is .... $cm$