- Home
- Standard 11
- Mathematics
The area of triangle formed by the lines $x + y - 3 = 0 , x - 3y + 9 = 0$ and $3x - 2y + 1= 0$
$\frac{{10}}{7}\,$ sq. units
$\frac{{16}}{7}\,$ sq. units
$4$ sq. units
$9$ sq. units
Solution
To find $B$
$3 x-2 y=-1$ and $x+y=3$
solving above two equations we get $y=2$ and $x=1$
$B=(1,2)$
To find $C$
$3 x-2 y=-1$ and $x-3 y=-9$
solving above two equations we get $y=27 / 6$ and $x=15 / 7$
$C=\left(\frac{15}{7}, \frac{27}{6}\right)$
$s=\frac{\text {perimeteroftriangle}}{2}$
$a=A B=\sqrt{(1-0)^{2}+(2-3)^{2}}$
$=\sqrt{1+1}$
$=\sqrt{2}$
$b=B C=\sqrt{\left(\frac{15}{7}-1\right)^{2}+\left(\frac{26}{7}-2\right)^{2}}$
$=\sqrt{\left(\frac{8}{7}\right)^{2}+\left(\frac{12}{7}\right)^{2}}$
$\frac{4 \sqrt{13}}{7}$
$c=C A=\sqrt{\left(\frac{15}{7}-0\right)^{2}+\left(\frac{26}{7}-3\right)^{2}}$
$=\sqrt{\left(\frac{15}{7}\right)^{2}+\left(\frac{5}{7}\right)^{2}}$
$=\frac{5 \sqrt{10}}{7}$
$s=\frac{a+b+c}{2}$
$s=\frac{\sqrt{2}+\frac{4 \sqrt{13}}{7}+\frac{5 \sqrt{10}}{7}}{2}$
$s=\frac{14 \sqrt{2}+4 \sqrt{13}+5 \sqrt{10}}{14}$
$s-a=\frac{-7 \sqrt{2}+4 \sqrt{13}+5 \sqrt{10}}{14}$
$s-b=\frac{14 \sqrt{2}-4 \sqrt{13}+5 \sqrt{10}}{14}$
$s-c=\frac{14 \sqrt{2}+4 \sqrt{13}-5 \sqrt{10}}{14}$
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$A=\sqrt{\left(\frac{-7 \sqrt{2}+4 \sqrt{13}+5 \sqrt{10}}{14}\right)\left(\frac{14 \sqrt{2}-4 \sqrt{13}+5 \sqrt{10}}{14}\right)\left(\frac{14 \sqrt{2}+4 \sqrt{13}-5 \sqrt{10}}{14}\right)}$
Multiplying and solving
$A=\frac{16}{7}$ sq unit