The area under the velocity$-$time graph gives the value of
velocitv
acceleration
distance travelled
none of these
Write any two equations of motion for a body having uniform acceleration.
A body moves with a velocity of $2\, m s ^{-1}$ for $5\, s$, then its velocity increases uniformly to $10\, m s ^{-1}$ in next $5\, s.$ Thereafter, its velocity begins to decrease at a uniform rate until it comes to rest after $5\, s$.
$(i)$ Plot a velocity-time graph for the motion of the body.
$(ii)$ From the graph, find the total distance covered by the body after $2\, s$ and $12\, s$.
Ali while driving to school computes the average speed for his trip to be $20\, km h^{-1}$. On his return trip along the same route there is less traffic and the average speed is $30\, km h^{-1} .$ What is the average speed for Ali's trip ?
What is the slope of the displacement $-$ time graph when the body has uniform motion ?
A person travelling in a bus noted the timings and the corresponding distances as indicated on the km stones. (a) Name this type of table $(b)$ What conclusion do you draw from this data ?
Time | Distance |
$8.00\, am$ | $10\, km$ |
$8.15 \,am$ | $20 \,km$ |
$8.30\, am$ | $30\, km$ |
$8.45\, am$ | $40\, km$ |
$9.00\, am$ | $50\, km$ |