- Home
- Standard 13
- Quantitative Aptitude
4.Average
hard
The average of $5$ consecutive integers starting with $m$ is $n$. What is the average of $6$ consecutive integers starting with $( m +2) ?$
A
$\frac{2 n+5}{2}$
B
$(n+2)$
C
$(n+3)$
D
$\frac{2 n+9}{2}$
Solution
Let the $5$ consecutive integers be $m , m +1, m +2, m +3, m +4$
$m+m+1+m+2+m+3+m+4=5 n$
$5 m+10=5 n \Rightarrow n=m+2$
Now, the average of $6$ consective number starting with $( m +2)$
$=\frac{[m +2+ m +3+ m +4+m+5+m+6+m+7]}{6}=\frac{6 m+27}{6}$
$=\frac{2 m+9}{2}=\frac{2(n-2)+9}{2}=\frac{2 n+5}{2}$
Standard 13
Quantitative Aptitude