The Boolean Expression $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ is equivalent to:
$p\;\vee \;q$
$\;p\;\vee \; \sim q$
$ \sim \;p\; \wedge \;q$
$\;p\; \wedge \;q$
Which of the following statements is $NOT$ logically equivalent to $\left( {p \to \sim p} \right) \to \left( {p \to q} \right)$?
Consider the following statements:
$P :$ Ramu is intelligent
$Q $: Ramu is rich
$R:$ Ramu is not honest
The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.
Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.
When does the current flow through the following circuit
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is: