The capacity of an air condenser is $2.0\, \,\mu F$. If a medium is placed between its plates. The capacity becomes $ 12\, \,\mu F$. The dielectric constant of the medium will be

  • A

    $5$

  • B

    $4$

  • C

    $3$

  • D

    $6$

Similar Questions

A parallel plate capacitor of capacitance $12.5 \mathrm{pF}$ is charged by a battery connected between its plates to potential difference of $12.0 \mathrm{~V}$. The battery is now disconnected and a dielectric slab $\left(\epsilon_{\mathrm{r}}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is_______.$\times 10^{-12} \mathrm{~J}$.

  • [JEE MAIN 2024]

The respective radii of the two spheres of a spherical condenser are $12\;cm$ and $9\;cm$. The dielectric constant of the medium between them is $ 6$. The capacity of the condenser will be

Two identical charged spheres are suspended by string of equal lengths. The string make an angle of $37^{\circ}$ with each other. When suspended in a liquid of density $0.7 \mathrm{~g} / \mathrm{cm}^3$, the angle remains same. If density of material of the sphere is $1.4 \mathrm{~g} / \mathrm{cm}^3$, the dielectric constant of the liquid is_____$\left(\tan 37^{\circ}=\frac{3}{4}\right)$.

  • [JEE MAIN 2024]

A parallel plate capacitor is filled with $3$ dielectric materials of same thickness, as shown in the sketch. The dielectric constants are such that $k_3 > k_2 > k_1$. Let the magnitudes of the electric field in and potential drops across each dielectric be $E_3$, $E_2$,$ E_1$, $\Delta V_3$, $\Delta V_2$ and $\Delta V_1$, respectively. Which one of the following statement is true ?

A parallel plate capacitor having crosssectional area $A$ and separation $d$ has air in between the plates. Now an insulating slab of same area but thickness $d/2$ is inserted between the plates as shown in figure having dielectric constant $K (=4) .$ The ratio of new capacitance to its original capacitance will be,

  • [NEET 2020]