Gujarati
Hindi
10-1.Circle and System of Circles
normal

The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :

A

$(3 , 2)$

B

$(4 , 4)$

C

$(2 , 7)$

D

$(2 , 5)$

Solution

let

$S_{1}=x^{2}+y^{2}-2 y-3=0$

$C_{1}(0,1), r_{1}=2$

$S_{2}: x^{2}+y^{2}-8 x-18 y+93=0$

$C_{2}(4,9), r_{2}=2$

Hence, for smallest circle ${ }^{\prime} C_{3}^{\prime}$ centre is midpoint of ${ }^{\prime} C_{1}^{\prime},{ }^{\prime} C_{2}^{\prime}$ $\therefore C_{3}\left(\frac{0+4}{2}, \frac{9+1}{2}\right)$

$C_{3}(2,5)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.