- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :
A
$(3 , 2)$
B
$(4 , 4)$
C
$(2 , 7)$
D
$(2 , 5)$
Solution
let
$S_{1}=x^{2}+y^{2}-2 y-3=0$
$C_{1}(0,1), r_{1}=2$
$S_{2}: x^{2}+y^{2}-8 x-18 y+93=0$
$C_{2}(4,9), r_{2}=2$
Hence, for smallest circle ${ }^{\prime} C_{3}^{\prime}$ centre is midpoint of ${ }^{\prime} C_{1}^{\prime},{ }^{\prime} C_{2}^{\prime}$ $\therefore C_{3}\left(\frac{0+4}{2}, \frac{9+1}{2}\right)$
$C_{3}(2,5)$
Standard 11
Mathematics