The centre of the smallest circle touching the circles $x^2 + y^2- 2y - 3 = 0$ and $x^2+ y^2 - 8x - 18y + 93 = 0$ is :
$(3 , 2)$
$(4 , 4)$
$(2 , 7)$
$(2 , 5)$
The range of values of $'a'$ such that the angle $\theta$ between the pair of tangents drawn from the point $(a, 0)$ to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi }{2} < \theta < \pi$ is :
The condition that the circle ${(x - 3)^2} + {(y - 4)^2} = {r^2}$ lies entirely within the circle ${x^2} + {y^2} = {R^2},$ is
The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:
The number of common tangents to two circles ${x^2} + {y^2} = 4$ and ${x^2} - {y^2} - 8x + 12 = 0$ is
If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord of another circle $'C'$, whose center is at $(2,1),$ then its radius is..........