Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
normal

The coefficient of apparent expansion of liquid when determined using two different vessels $A$ and $B$ are $\gamma _1$ and $\gamma _2$ respectively. If the coefficient of linear expansion of the vessel $A$ is $\alpha $, then coefficient of linear expansion of $B$

A

$\frac{{\alpha {\gamma _1}{\gamma _2}}}{{{\gamma _1} + {\gamma _2}}}$

B

$\frac{{{\gamma _1} - {\gamma _2}}}{{2\alpha }}$

C

$\frac{{{\gamma _1} - {\gamma _2} + \alpha }}{3}$

D

$\frac{{{\gamma _1} - {\gamma _2}}}{3} + \alpha $

Solution

$\gamma _{real} = \gamma _{apparent} + \gamma _{vessel}$

For $A: \gamma_{\text {real }}=\gamma_{1}+3 \alpha \quad\left(\because \alpha_{A}=\alpha\right)$

For $\mathrm{B}: \gamma_{\text {real }}=\gamma_{2}+3 \alpha_{\mathrm{B}}$

$\Rightarrow \gamma_{1}+3 \alpha=\gamma_{2}+3 \alpha_{\mathrm{B}}$

$\alpha_{\mathrm{B}}=\frac{\gamma_{1}-\gamma_{2}}{3}+\alpha$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.