The coefficient of apparent expansion of liquid when determined using two different vessels $A$ and $B$ are $\gamma _1$ and $\gamma _2$ respectively. If the coefficient of linear expansion of the vessel $A$ is $\alpha $, then coefficient of linear expansion of $B$
$\frac{{\alpha {\gamma _1}{\gamma _2}}}{{{\gamma _1} + {\gamma _2}}}$
$\frac{{{\gamma _1} - {\gamma _2}}}{{2\alpha }}$
$\frac{{{\gamma _1} - {\gamma _2} + \alpha }}{3}$
$\frac{{{\gamma _1} - {\gamma _2}}}{3} + \alpha $
The coefficient of apparent expansion of a liquid when determined using two different vessels $A$ and $B$ are $\gamma_1$ and $\gamma_2$ respectively. If the coefficient of linear expansion of the vessel $A$ is $\alpha $, then coefficient of linear expansion of $B$
The amount of heat required to change $1\ gm (0^o C)$ of ice into water of $100^o C$, is ............ $\mathrm{cal}$
A lead bullet at $27\,^oC$ just melts when stopped by an obstacle. Assuming that $25\%$ of heat is absorbed by the obstacle, then the velocity of the bullet at the time of striking is ........ $m/s$ ($M.P.$ of lead $= 327\,^oC,$ specific heat of lead $= 0.03\,cal/g\,^oC,$ latent heat of fusion of lead $= 6\,cal/g$ and $J = 4.2\,joule/cal$ )
If an electric heater is rated at $1000\,W$, then the time required to heat one litre of water from $20\,^oC$ to $60\,^oC$ is
Heat required to melt $1\, gm$ of ice is $80\, cal$. A man melts $60\, gm$ of ice by chewing in one minute. His power is ........ $W$