Gujarati
Hindi
10-1.Thermometry, Thermal Expansion and Calorimetry
normal

The coefficient of apparent expansion of mercury in a glass vessel is $153\times 10^{-6}/\,^oC$ and in a steel vessel is $144\times 10^{-6}/\,^oC.$ If $\alpha $ for steel is $12 \times 10^{-6}/\,^oC,$ then $\alpha $ that of glass is

A

$9 \times 10^{-6}/\,^oC$

B

$6 \times 10^{-6}/\,^oC$

C

$36 \times 10^{-6}/\,^oC$

D

$27 \times 10^{-6}/\,^oC$

Solution

$\gamma_{\mathrm{real}}=\gamma_{\mathrm{app}}+\gamma_{\mathrm{vessel}}$

So $\left(\gamma_{\text {app}}, \gamma_{\text {vessel }}\right)_{\text {gass }}=\left(\gamma_{\text {app }}+\gamma_{\text {vessel}}\right)_{steel}$

$\Rightarrow 153 \times 10^{-6}+\left(Y_{\text {vessel}}\right)_{\text {glass }}=\left(144 \times 10^{-6}+\gamma_{\text {vessel }}\right)_{\text {steel }}$

Further. $\left(y_{\text {vessel}}\right)_{\text {steel}}=3 a=3 \times\left(12 \times 10^{-6}\right)=36 \times 10^{-6}/^\circ {C}$

$\Rightarrow 153 \times 10^{-6}+\left(\gamma_{\text {vessel }}\right)_{\text {glass}}=144 \times 10^{-6}+36 \times 10^{-6}$

$\Rightarrow\left(\gamma_{\text {vessel }}\right)_{\text {glass }}=3 \mathrm{a}=27 \times 10^{-6}/^\circ {C}$

$\Rightarrow a=9 \times 10^{-6} /^{\circ} \mathrm{C}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.