The drawing shows a top view of a frictionless horizontal surface, where there are two indentical springs with particles of mass $m_1$ and $m_2$ attached to them. Each spring has a spring constant of $1200\  N/m.$ The particles are pulled to the right and then released from the  positions shown in the drawing. How much time passes before the particles are again side by side for the first time if $m_1 = 3.0\  kg$ and $m_2 = 27 \,kg \,?$

818-10

  • A

    $\frac{\pi}{40}\ sec$

  • B

    $\frac{\pi}{20}\ sec$

  • C

    $\frac{3\pi}{40}\ sec$

  • D

    $\frac{\pi}{10}\ sec$

Similar Questions

In the given figure, a mass $M$ is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is $k$. The mass oscillates on a frictionless surface with time period $T$ and amplitude $A$. When the mass is in equilibrium position, as shown in the figure, another mass $m$ is gently fixed upon it. The new amplitude of oscillation will be

  • [JEE MAIN 2021]

A spring having a spring constant $‘K’$ is loaded with a mass $‘m’$. The spring is cut into two equal parts and one of these is loaded again with the same mass. The new spring constant is

A spring of force constant $k$ is cut into lengths of ratio $1:2:3$ . They are connected in series and the new force constant is $k'$ . Then they are connected in parallel and force constant is $k''$ . Then $k':k''$ is

  • [NEET 2017]

Springs of spring constants $K, 2K, 4K, 8K,$ ..... are connected in series. A mass $40\, gm$ is attached to the lower end of last spring and the system is allowed to vibrate. What is the time period of oscillation ..... $\sec$. (Given $K = 2\, N/cm$)

Two identical springs of spring constant $k$ are attached to a block of mass $m$ and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance $x$ towards right, find the restoring force.